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THE NUMERICAL PROPULSION SYSTEM SIMULATION:
AN OVERVIEW

John K. Lytle
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

SUMMARY

Advances in computational technology and in physics-based modeling are making large-scale, detailed
simulations of complex systems possible within the design environment. For example, the integration of com-
puting, communications, and aerodynamics has reduced the time required to analyze major propulsion system
components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation
of major propulsion system components to become a routine part of designing systems, providing the designer
with critical information about the components early in the design process. This paper describes the develop-
ment of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the inte-
gration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such
as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of
complete aircraft engines. This will provide the product developer with a “virtual wind tunnel” that will reduce
the number of hardware builds and tests required during the development of advanced aerospace propulsion
systems.

INTRODUCTION

The strategic goals of the Aero-Space Technology Office at the National Aeronautics and Space Admini-
stration (NASA) are defined in terms of advancing transportation capability across the speed spectrum from
subsonic for commercial applications to hypersonic for access-to-space applications. These goals are organized
under the Three Pillars of Global Civil Aviation, Revolutionary Technology Leaps, and Access-to-Space
(ref. 1). Within the Three Pillar goals are technical objectives that contain specific goals for revitalizing gen-
eral aviation; increasing airport throughput; and reducing the aircraft accident rate, travel time, noise and
emissions, aerospace product development time, and ownership cost. The accomplishment of these goals will
require advanced technologies that will be prohibitively expensive to develop and insert into aerospace prod-
ucts without advanced design tools to reduce the number of hardware builds and tests traditionally required in
engine development.

The NASA Glenn Research Center is developing the capability to increase design confidence through the
use of advanced computational simulation known as the numerical propulsion system simulation (NPSS). This
“virtual wind tunnel,” depicted in figure 1, will permit rapid, affordable computation of stability, cost, life-
time, and certification requirements. The simulation uses validated models for fluid mechanics, heat transfer,
combustion, structural mechanics, materials, controls, manufacturing, and economics. It will enable accurate
information about propulsion system parameters such as performance, operability, and life to be determined
early in the design process before any hardware is built or tested.

The NPSS is a cooperative effort between NASA and other Government agencies, industry, and universi-
ties to integrate propulsion technologies with high-performance computing and communications technologies
into a complete system for performing detailed full-engine simulations. Computing and communications tech-
nologies are essential to enable the execution of complex simulations in a timely manner and to produce
information of value to the designer and analyst. A major engine manufacturer estimates that such simulations
could reduce design and development time and cost by about 30 to 40 percent through fewer redesigns, retests,
and rebuilds of costly hardware. This translates into a savings of $100 million over a year of development time.
For example, more accurate prediction of engine efficiency and operability would be possible if the “hot-
running” geometry of the compressor rotor, blades, and casing could be predicted as a result of the integrated
aerodynamic, structural, and thermal loadings. In advanced high-speed engines, because of prohibitively
expensive testing, large-scale simulation may be the only viable approach for evaluating the integration of
components like the inlet with the engine.

The NPSS system consists of three main elements: (1) the engineering application models, (2) the
system software for the simulation environment, and (3) the high-performance computing environment. This
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integrated, interdisciplinary system requires advancements in modeling techniques and data standards to cou-
ple the relevant disciplines such as aerodynamics, structures, heat transfer, combustion, acoustics, controls,
and materials; modeling techniques to couple subsystems and components at appropriate levels of fidelity;
object-oriented software design for a modular architecture; and portable, scalable, reliable system software for
integrating large numbers of distributed, heterogeneous computing platforms for parallel processing.

The technology products from NPSS and a summary of the technology challenges and possible solutions
are described in this paper. A roadmap for the development of capabilities that shows a transition from single-
discipline components and subsystems to full-system simulation into multidisciplinary and dynamic simula-
tions is shown in figure 2. The National Cycle Program is an early release of the NPSS object-oriented
architecture, ADPAC represents the advanced ducted propfan analysis code, and APNASA is the average
passage NASA code. Additional details on the NPSS technologies are described in reference 2. They are
summarized below for completeness. The NPSS is currently supported under the NASA High Performance
Computing and Communications Program.

ENGINEERING APPLICATION MODELS

The modeling capabilities are divided into three subelements: (1) component integration to achieve large
subsystem and system simulations, (2) multidisciplinary coupling to capture critical interactions among the
disciplines, and (3) multifidelity analysis to tailor the complexity of the analysis to the design problem under
study. The current modeling is focused on aircraft turbofan engines.

Component Integration

The ability to resolve interactions between components in a gas turbine engine is currently limited to two-
dimensional models. Most of the full-engine simulations are conducted at zero-dimensional or parametric
levels. These models are unable to resolve the complex multidimensional and multidisciplinary flows that ex-
ist within the engine. Interactions that are driven by these complex flows are usually unresolved until hardware
is built and tested. This is often late in the development process and after a significant investment has been
made in the design of the engine. At this point, changes in design are very costly and time consuming.

Component integration is required to understand important interactions between the components.
Traditional component design methods assume steady, uniform boundary conditions that are generally not
accurate and result in operational problems that are not discovered until late in the development process or
until deployment in the field. Two approaches are currently being developed to account for component
interaction: the establishment of interface standards for code-to-code communication, which is being addressed
in the development of the simulation environment, and the use of single-analysis codes to perform larger scale
simulations. The latter requires that the appropriate physical processes be represented in one code, such as tip
clearance flows, turbulence, heat transfer, and so forth, and that the code be run in parallel to reduce the
overall analysis time. The current state of development involves a focus on turbomachinery and combustion
models to enable the assembly of a high-fidelity, full-engine simulation.

In fiscal year 1999, the turnaround time for three-dimensional Navier-Stokes analysis of turbomachinery
was reduced by a factor of 400 relative to the 1992 baseline through improvements in the average passage
NASA code (APNASA). Improvements were made in the modeling approach that reduced the number of
iterations across the blade rows required for convergence and in the interprocessor communication overhead.
This accomplishment enables a full 21-blade-row compressor simulation in less than 15 hr and a coupled high-
pressure and low-pressure turbine subsystem simulation. The later configuration represents work by Turner
et al. on the 18-blade-row cooled turbine in the GE90 aircraft engine (ref. 3). This was the first time a dual-
spool cooled turbine was analyzed in three dimensions. The parallel efficiency of the code was 87.3 percent
using 121 processors on the NASA High Performance Computing and Communications Program (HPCCP) SGI
Origin 2000 testbed. The accuracy and efficiency of the calculation allow it to be effectively used in a design
environment so that the multistage and multicomponent effects can be accounted for in turbine design before
hardware is built and tested.

In addition to the turbomachinery simulation, high-fidelity analysis of the combustor is also required.
Rapid analysis of a combustor design requires not only short processing turnaround, but also tools to assist in
pre- and postprocessing of the data. Preprocessing is aided by an unstructured grid generation to enable
complete model buildup from compressor exit to turbine inlet. This includes the complex geometry associated
with swirlers and injectors. Postprocessing tools are required to reduce the vast amount of data produced by
three-dimensional reacting-flow computations into a few design parameters that can be used to assess
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performance and make design decisions. Improvements in processing time were gained by reducing inter-
processor communication overhead and kinetics modeling time through implementation of the intrinsic low-
dimensional manifold method. As a result, processing turnaround time has been reduced by a factor of 200
relative to the 1992 baseline, as shown in figure 3 for the National Combustion Code (ref. 4). Additionally,
aircraft engine emissions will be reduced to meet national goals.

Clear data exchange standards are necessary to develop the integrated simulation system approach
proposed for NPSS. The approach taken by NPSS is to work closely with national and international standards
organizations to implement existing standards within NPSS, expand standards as required, and develop new
standards when necessary. The standards currently being worked on cover a broad spectrum from one-
dimensional and three-dimensional engineering standards to software standards.

Multidisciplinary Coupling

The physical processes within an air-breathing gas turbine engine are inherently multidisciplinary. Conse-
quently, the accurate simulation of these processes must properly account for the interactions between the dis-
ciplines. For example, in the high-pressure compressor, aerodynamic, structural, and thermal loadings all
contribute to changes in geometry (i.e., casing, blade shape, tip clearances, etc.) that affect the efficiency and
stability of the compressor. An accurate prediction of stall margin requires simulation of all these loadings.

Aerospace propulsion systems are complex assemblies of dynamically interacting disciplines. The tradi-
tional analysis approach is to handle interactions between single disciplines in a sequential manner; one
discipline transfers information from its own calculation through unique, application-specific translators to
make it usable by the next discipline in the sequence. This is a lengthy, tedious, and oftentimes inaccurate
process because of the multiple translations taking place. Three different types of coupling are being investi-
gated for inclusion into NPSS. These types are referred to as loosely coupled, process-coupled, and tightly
coupled. A detailed description of the three processes is contained in reference 5. The tightly coupled
methodology will be described in more detail below because of its unique relevance to HPCCP.

The third type of coupling being proposed for inclusion in NPSS is tight coupling. In some propulsion
system problems, the interdependence of the disciplines is so “tightly coupled” that the loose coupling at the
data access and process coupling levels cannot capture the physics of the problem. These cases require an
analysis that couples the disciplines at a fundamental equation level. For these problems the entire system
matrix must be solved simultaneously using implicit methods. Tightly coupled solutions also have the
advantage that the communication overhead is significantly reduced. A reduced communication overhead has
the potential for substantially increasing the scalability and parallel efficiency of multidisciplinary analysis.
While this approach is applicable to general multidisciplinary problems, its use will probably be limited to a
small number of tightly coupled disciplines and individual components in the near term because of the
extensive computational demands. SPECTRUM, a commercial code from ANSYS, Inc., is currently being
evaluated to determine whether it meets the NPSS customer requirements (ref. 6). The code uses an Arbitrary
Lagrangian-Eulerian (ALE) methodology for solution of the fluid-solid interface. SPECTRUM has been
successfully demonstrated on a number of nonturbomachinery applications. The severe operating environment
in an aircraft engine is a major new challenge for this technique.

Variable Complexity Analysis

The detailed simulation of a complex system like a gas turbine engine will require computing resources
and/or wall clock times that are beyond practical limits for use in industrial design environments. Conse-
quently, it will be necessary to provide modeling techniques that permit the analyst or designer to vary the
level of analysis detail throughout the engine based upon the particular physical processes being studied as the
result of a design change. For instance, determining the effect of a change in the shape of a fan blade on
engine performance may only require a three-dimensional simulation of the fan stage. The rest of the engine
could be modeled at lower levels of detail (two-, one-, or zero-dimensional) to minimize simulation setup and
execution time.

The hybrid engine model is an example of a kind of multifidelity analysis called zooming. The high-
pressure core of the engine (i.e., compressor, combustor, and turbine) is modeled as a zero-dimensional,
aerothermodynamic cycle analysis with component performance maps. In this example, however, the low-
pressure subsystem (i.e., inlet, fan, core inlet, bypass duct, nozzle) is modeled in three dimensions using a
CFD turbomachinery code, ADAPC (ref. 7). Aerothermodynamic boundary condition data is exchanged
directly between the low- and high-pressure subsystems. In addition, shaft power balances are achieved using
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both the CFD and engine cycle analysis. Since the cycle analysis executes much faster than the three-
dimensional simulation, the three-dimensional simulation is executed in parallel over a large cluster of work-
stations (64) to minimize the turnaround time. The hybrid model greatly simplifies the high-fidelity simulation
of the engine by using three-dimensional modeling only where required. In this example, the propulsion and
airframe integration or the impact of atmospheric disturbances on the engine would be modeled in detail with-
out requiring a three-dimensional solution of the core engine. The latter would be extremely time consuming to
set up, execute, and analyze.

Several different types of zooming that require a more robust software architecture have been identified for
the NPSS system. Currently, these capabilities are being integrated into the overall NPSS architecture. The
system simulations will be based on the view that only phenomena that affect system attributes, such as pro-
pulsion system life, reliability, performance, and stability, are of interest to the designer or analyst. While the
physics that affect these attributes could be captured by modeling the entire propulsion system at the highest
level of fidelity—three-dimensional transient and multidisciplinary—two problems prevent this from being a
viable option in most cases. First, the level of detailed information needed to use for boundary and initial con-
ditions to get a converged, validated solution would be extremely difficult to collect. Second, the computa-
tional time and cost would be prohibitively high for effective use in a design environment. Therefore, the
designer or analyst must tailor the fidelity of the simulation to capture the appropriate physics for each compo-
nent and discipline. This results in an analysis of variable complexity being performed across different compo-
nents and disciplines, which makes their integration into an overall subsystem or system simulation extremely
difficult. Consequently, the NPSS framework is being developed to allow the physical processes resolved from
a detailed analysis of a component or subcomponent to be communicated to a system analysis performed at a
lower level of detail for the purpose of evaluating system attributes. Conversely, the system analysis will help
evaluate which physical processes occurring on the component and subcomponent level are important to sys-
tem performance. This will allow the engineer or scientist to rapidly focus on the relevant processes within
components or subcomponents.

Zooming requires a hierarchy of codes and models to be in place to provide a wide range of simulation
capabilities, from detailed three-dimensional transient analyses down to zero-dimensional steady-state
analyses. Modeling approaches will be developed for communicating information from a detailed analysis to a
filtered, lower level analysis. This will require additional research to understand the mechanisms by which
phenomena on different length and time scales communicate. Research is already underway in computational
fluid dynamics and structural mechanics to develop this modeling approach and will be extended to consider
processes and scales appropriate for the entire propulsion system.

Simulation Environment

The simulation environment for NPSS will provide a common interface for a variety of users to access all
of the capabilities within NPSS. This means the interface will have to accommodate users of various skill lev-
els and enable users to modify code, easily replace analysis tools, and accept data from a variety of sources
such as simulations, existing data bases, and experiments. In addition, the environment must enable the seam-
less integration of all planned NPSS capabilities, such as multidisciplinary analysis, zooming, and distributed
computing on heterogeneous computing platforms.

The NPSS project is building a simulation environment that provides a generic zero-dimensional view of
an aeropropulsion engine and provides tools and standards for data exchange for the coupling of multidiscipli-
nary codes. The environment allows the engineer to zoom to finer levels of fidelity on a component-specific
basis while operating at the zero-dimensional view of the engine. NPSS will execute on a variety of computers
and allow distribution of engine components in any user-specified fashion. The approach taken for developing
NPSS incorporates the following key elements as part of the simulation environment:

1. Clear data interfaces through the development and/or use of data exchange standards
2. Modular and flexible software construction through the use of object-oriented methodologies
3. Integrated multilevel fidelity analysis techniques that capture the appropriate physics at the appropriate

fidelity for engine system simulations
4. High-performance, parallel, and distributed computing

The multidisciplinary nature of propulsion systems and the idea of “numerical zooming” between dispa-
rate timescale codes suggests that the engine computations would take place in a distributed heterogeneous
computing environment. Given this, and the fact that current programming techniques do not facilitate the
development of large software systems, a shift in programming approach is required. Fortunately, new
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technologies in software development such as object-oriented languages are becoming available. Object-
oriented languages were created to aid software development and management with maximum code
reusability, clear data connectivity, and code modularity.

The NPSS architecture is intended to be open and extensible. To this end, the architecture exploits the
capabilities of object-oriented programming (inheritance, polymorphism, and encapsulation), as well as mod-
ern object-oriented concepts including frameworks, component objects, and distributed object standards such
as the common object request broker architecture (CORBA). The objects in the architecture will know how to
expand and contract data for zooming from three-dimensional codes to zero-dimensional codes, and vice versa.
They will know what components are connected up and downstream of themselves for the purpose of generat-
ing execution sequences, and they will know how to connect aeropropulsion disciplines together. In fact, it is
because of these object-oriented features that the idea of providing an engine simulation environment like
NPSS is conceivable.

Within the environment, an engineer can assemble aeropropulsion simulations without restrictions on
fidelity, choice, or location of code. The engineer can accept modules that are resident in the NPSS architec-
ture or replace them with codes available at their respective sites. The “plug and play” capability illustrated
here is essential for keeping the architecture current and facilitating new analytical approaches. The corner-
stone of the NPSS architecture is its development from the object-oriented paradigm; it provides a computing
and engineering white board from which engine simulations can be created (ref. 8).

Figure 4 shows how zooming is incorporated into the cycle simulation. The entire engine is modeled at the
zero-dimensional level with data exchange from a one-dimensional mean line compressor code. The codes are
CORBA compliant, and communication is established through the object request broker (ORB). This imple-
mentation is a general approach that allows other analyses to be linked together, other mathematical opera-
tions to be performed as the data is being expanded or contracted, and the simulation to be distributed across a
wide area network to facilitate remote team member involvement. This capability is being developed in part
under contract with Pratt & Whitney and the United Technologies Corporation.

High-Performance Computing

The detailed simulation of a complex system like the gas turbine engine requires significant computing
capacity that is not available today in practical terms. A three-dimensional simulation of the primary flow path
in a full engine requires more than 1012 floating-point operations/sec (teraFLOPS). Today this speed is only
available in a few very expensive machines and has not been achieved on propulsion system applications. The
capabilities planned for NPSS would require 1015 floating-point operations/sec (petaFLOPS). It is not expected
that a serial machine or even a moderately parallel machine will be able to accomplish this with current
trends in hardware technology.

Therefore, the approach in the NPSS Project under the HPCCP is to develop application and system soft-
ware that will enable the use of large numbers of parallel processors. Technologies that provide good scalabil-
ity to even larger numbers of parallel computers will be of particular interest for this approach. The ability to
do distributed computing allows the system user to take advantage of the large number of commodity work-
stations and personal computers that normally exist within an organization and to benefit from the continuing
reduction in the cost-to-performance ratio of these machines. The NPSS Project, supported by the HPCCP,
developed the software required to accomplish much of this objective under the Affordable High Performance
Computing (AHPC) Cooperative Agreement (ref. 9).

The original objective of the AHPC effort was to achieve similar performance and reliability to a 1994
vector supercomputer at 25 percent of the cost. Much larger computing resources would thus be available to
the designer, analyst, and researcher than ever before. Consequently, the project also demonstrated a reduction
of more than an order of magnitude in the time needed to perform an aerodynamic simulation of a complete
high-pressure compressor by taking advantage of much larger computing resources than are available on a sin-
gle vector machine. It is estimated that this reduction in analysis turnaround time will result in a 33-percent
reduction in compressor design time and a savings of several million dollars. The actual performance of the
workstation cluster far exceeded the original goal. The cluster actually achieved the same performance and
reliability as a vector supercomputer at 8 percent of the cost.

This accomplishment has led to further research in the area of cluster computing to reduce the cost-to-
performance ratio of supercomputing. At the NASA Glenn Research Center, a cluster of 64 Pentium II
processors is being used to achieve another tenfold reduction in the cost-to-performance ratio below that of
workstation clusters. The Pentium II machines, each with two 400-MHz processors, are configured in two
banks of 16 machines. The machines are interconnected with the Fast Ethernet network and the two banks are
connected through a Gigabit Ethernet. The turbomachinery and combustion simulations in use under NPSS are
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currently being ported to the Pentium processors. At this point, approximately 50 percent of the project goal
has been achieved.

CONCLUSION

Detailed, multidisciplinary, full-engine simulations are possible with the integration of advanced physics-
based propulsion modeling with high-performance computing and communications technologies. Modeling
techniques must include component integration to capture interactions, multidisciplinary coupling to capture
key physical processes, and multifidelity analysis to minimize the time-to-solution. Computing and communi-
cations technologies must provide system software to enable the user to quickly build and analyze large simu-
lations and to execute simulations over a large number of parallel, distributed, heterogeneous computers.
Achieving these capabilities will lead to substantial reductions in the design and development time of new
aerospace products. The rapid increase in the size and complexity of simulations over the past decade demon-
strates the high feasibility of accomplishing these goals.
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Figure 1.—Numerical test cell for aerospace propulsion systems.
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Figure 3.—200:1 reduction of full combustor simulation demonstrated relative to 1992 baseline. (a) Estimated
   reduced turnaround time. (b) Multidisciplinary approach to reducing turnaround time. (c) Three-dimensional
   reacting flow.
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Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of
complex systems possible within the design environment. For example, the integration of computing, communications,
and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to
minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to
become a routine part of designing systems, providing the designer with critical information about the components early
in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a
modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using
geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently
focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a “virtual
wind tunnel” that will reduce the number of hardware builds and tests required during the development of advanced
aerospace propulsion systems.


